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Let lk , 1�k�n, be the fundamental polynomials of Lagrange interpolation on
the nodes xn<xn&1< } } } <x1 . The classical Erdo� s�Tura� n inequality is

lk(x)+lk+1(x)�1, x # [xk+1 , xk], 1�k�n&1.

This paper gives an extension for such an inequality to the sum of successive
fundamental polynomials of Hermite interpolation. � 2001 Academic Press

1. INTRODUCTION AND MAIN RESULT

This paper deals with the Erdo� s�Tura� n type inequality for the sum of
successive fundamental polynomials of Hermite interpolation.

Let N1=[1, 3, 5, ...], N2=[2, 4, 6, ...], N=N1 _ N2 , N0=N _ [0] and

&��a=xn+1<xn< } } } <x1<x0=b�+�. (1.1)

We introduce the notation:

(a, b) ={
[a, b],
(a, b],
[a, b),
(a, b),

a>&�, b<+�,
a=&�, b<+�,
a>&�, b=+�,
a=&�, b=+�.

Let + be a nondecreasing function on (a, b) with infinitely many points of
increase such that all moments of d+ are finite. We call d+ a measure. Let
m0 , mn+1 # N0 , mk # N, k=1, 2, ..., n, and N :=�n+1

k=0 mk&1. We always
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assume that m0=0 if a=&� and mn+1=0 if b=+�. Denote by PN the
set of polynomials of degree at most N and by Ajk the fundamental polyno-
mials for Hermite interpolation, i.e., Ajk # PN satisfy

A (i)
jk (xq)=$ji$kq , i=0, 1, ..., mq&1, j=0, 1, ..., mk&1,

q, k=0, 1, ..., n+1. (1.2)

In particular, for Lagrange interpolation (m0=mn+1=0, mk=1, k=1,
2, ..., n) we accept the notations lk :=A0k , k=1, 2, ..., n, and in this case we
have the classical Erdo� s�Tura� n inequality [2, Lemma IV]

lk(x)+lk+1(x)�1, x # [xk+1 , xk], 1�k�n&1. (1.3)

This inequality has many applications, say, it is used to estimate lower
bounds for the Lebesgue function of Lagrange interpolation [5]. A weighted
form of (1.3) is obtained by D. S. Lubinsky [4]. The main aim of this paper
is to give a very general extension of this inequality to Hermite interpolation.
To this end let

s&1=1, sr=(&1)m0+m1+ } } } +mr, r=0, 1, ..., n+1, (1.4)

and

_(x)=sgn `
n

k=0

(x&xk)mk. (1.5)

Then we can state the first main result as follows.

Theorem 1. Let 0�r�n+1 and let an (N+1)th continuously differen-
tiable function f satisfy

f ( j)(x)�0, x # (a, xr) , j=0, 1, ..., N+1. (1.6)

Then

sr_ _f (x)& :
n+1

k=r+1

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # (a, xr) , (1.7)

sr_(x) :
n+1

k=r+1

:
mk&1

j=0

f ( j)(xk) Ajk(x)�0, x # (xr , b) , (1.8)

sr&1_(x) _f (x)& :
n+1

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # (a, xr) , (1.9)
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and

sr&1 _(x) :
n+1

k=r

:
mk&1

j=0

f ( j)(xk) A jk(x)�0, x # (xr , b). (1.10)

This is a very general and useful result whose consequences and applica-
tions are stated in the last section. The proof of this theorem is given in the
next section. We need a fundamental lemma [3, Lemma I.5.3, p. 30], in
which Z( f, I) denotes the number of zeros of the function f in the interval
I counting multiplicities.

Lemma A. Given a ! # (a, b) let an (N+1)th continuously function f
satisfy

f ( j)(x)>0, x # (a, !) , j=0, 1, ..., N+1,

and let P # PN , P{0. Then

Z( f &P, (a, !) )+Z(P, (!, b) )�N+1.

2. PROOF OF THEOREM 1

It suffices to show (1.7)�(1.10) for the case when a>&� and b<+�.
In fact, if, say, a=&� and b<+�, we can choose an arbitrary point
&�<A<xn . The inequality (1.6) implies that

f ( j)(x)�0, x # [A, xr], j=0, 1, ..., N+1.

Then that the inequality

sr_(x) _f (x)& :
n+1

k=r+1

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # [A, xr],

holds for every A implies the inequality (1.7). So does for the inequality (1.9).
Now let a>&� and b<+�. By the definitions (1.4) and (l.5) we

observe that

_(x)=sr , x # (xr+1 , xr), 0�r�n. (2.1)

First, we are going to show (1.7)�(1.10) for f satisfying

f ( j)(x)>0, x # [a, xr], j=0, 1, ..., N+1, (2.2)

instead of (1.6) (because we intend to use Lemma A). We separate two
parts.
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Part 1. The proof of (1.7) and (1.8). In this case put

P(x)= :
n+1

k=r+1

:
mk&1

j=0

f ( j)(xk) Ajk(x) (2.3)

and distinguish three cases.

Case 1.1. r=n+1. In this case (1.7) and (1.8) are trivial, because P=0.

Case 1.2. r=n and mn+1=0. In this case (1.8) is trivial and (1.7) becomes

sn_(x) f (x)�0, x # [a, xn],

which by (2.1) and (2.2) is true.

Case 1.3. r<n or mn+1>0. In this case we break the proof into a
series of claims.

Claim 1. For the function

F(x)={f (x)&P(x),
P(x),

x<xr ,
x�xr ,

(2.4)

we have

Z(F, (xr+1 , xr))=Z(P, (xr+1 , xr))=0. (2.5)

In fact, the definition of F shows that for each k, 0�k�n+1, the point
xk is a zero of mk multiplicities of F. If the first equality of (2.5) was not
true, by Lemma A we would have

N+1�Z( f &P, [a, xr])+Z(P, [xr , b])

=Z(F, [a, xr+1])+Z(F, (xr+1 , xr))+Z(F, [xr , b])

�N+2,

a contradiction. This proves the first equality of (2.5). Similarly, if the second
equality of (2.5) is not true, by Lemma A it would lead to a contradiction:

N+1�Z( f &P, [a, xr+1])+Z(P, [xr+1 , b])

=Z(F, [a, xr+1])+Z(P, (xr+1 , xr))+Z(F, [xr , b])

�N+2.

Claim 2. If r�1 or m0>0, then

F(x)>0, P(x)>0, x # (xr+1 , xr). (2.6)
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In fact, since P(xr+1)= f (xr+1)>0 and P(xr)=0, (2.6) follows from (2.2)
and (2.5).

Claim 3. The function _F does not change sign in [a, b].

In fact, suppose to the contrary that the function _F changes sign at
z # (a, b). If z � [x1 , ..., xn] then F(z)=0. If z=xk , 1�k�n, then the
inequality

[_(xk&$) F(xk&$)][_(xk+$) F(xk+$)]<0

would occur for all shall $>0, which by (1.5) implies that the inequality

(&1)mk F(xk&$) F(xk+$)<0 (2.7)

would occur for all small $>0. If we agree that

F ( j)(x)={f ( j)(x)&P( j)(x),
P( j)(x),

x<xr ,
x�r,

then we can conclude

F (mk)(xk)=0. (2.8)

Indeed, if k{r then (2.8) is trivial; if k=r then by (2.6) the inequality (2.7)
means

(&1)mr P(xr&$) P(xr+$)<0

and hence (2.8) with k=r follows. This proves (2.8). By (2.8) we have
Z(F, [a, b])�N+2, contradicting Lemma A. This contradiction proves
Claim 3.

Claim 4. We have

sr_(x) F(x)�0, x # [a, b]. (2.9)

We separate two cases.

Case 1.3.1. r�1 or m0>0. In this case by (2.6) and (2.1) sgn[_(x) F(x)]
=_(x)=sr holds for x # (xr+1 , xr), which by Claim 3 yields (2.9).

Case 1.3.2. r=m0=0. In this case since Z(F, [a, b])=Z( f &P, [a, b])
=N+1, by Rolle Theorem for every j, j=0, 1, ..., N, there must exist the
largest zero !j of F ( j) such that

x1=!0= } } } =!m1&1>!m1
> } } } >!N
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and

F ( j)(! j)=0, Z(F ( j), (! j , b])=0, j=0, 1, ..., N. (2.10)

Recalling that F (N+1)(x)= f (N+1)(x)>0 in [a, b] by (2.2), it follows from
(2.10) by induction that

F ( j)(x)>0, x>!j , j=N, N&1, ..., 1, 0.

In particular F(x)>0 for x # (x1 , b), which implies that

sgn[_(x) F(x)]=1=s0

holds for x # (x1 , b) and hence yields (2.9) with r=0.
This completes the proof of Claim 4. With the help of (2.4) and (2.9) we

get (1.7) and (1.8) under the assumption (2.2).

Part 2. The proof of (1.9) and (1.10). In this case put

P(x)= :
n+1

k=r

:
mk&1

j=0

f ( j)(xk) A jk(x)

instead of (2.3) and distinguish two cases.

Case 2.1. r=n+1 and mn+1=0. In this case (1.9) and (1.10) are
trivial, because P=0.

Case 2.2. r�n or mn+1>0. In this case choose

F(x)={f (x)&P(x),
P(x),

x�xr ,
x>xr

(2.11)

instead of (2.4). By the same argument as above we again conclude that the
function _F does not change sign in [a, b]. But in this case we claim

sr&1 _(x) F(x)�0, x # [a, b]. (2.12)

To prove (2.11) we again separate two cases.

Case 2.2.1. r�1. In this case by the same argument as that of Case
1.3.1 we can obtain that F(x)=P(x)>0 for x # (xr , xr&1) and hence
by (2.1) sgn[_(x) F(x)]=_(x)=sr&1 holds for x # (xr , xr&1), which
yields (2.12).

Case 2.2.2. r=0. In this case (1.10) is trivial and it suffices to show
(1.9). If m0=0 then (1.9) is equivalent to (1.7). So it is enough to prove
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(1.9) for the case when m0>0. Since Z(F, [a, b])=Z( f &P, [a, b])=
N+1, by Rolle Theorem for every j, j=0, 1, ..., N, there must exist the
largest zero 'j of F ( j) such that

x0='0= } } } ='m0&1>'m0
> } } } >'N

and

F ( j)(' j)=0, Z(F ( j), (' j , b])=0, j=0, 1, ..., N. (2.13)

From the fact F (N+1)(x)= f (N+1)(x)>0 in [a, b] by (2.2), it follows from
(2.13) by induction that

F ( j)(x)>0, x>' j , j=N, N&1, ..., m0+1, m0 ,

and further for small $>0

(&1)m0& j F ( j)(x)>0, x # (b&$, b), j=m0&1, m0&2, ..., 1, 0.

In particular (&1)m0 F(x)>0 for x # (x1 , b), which implies that

sgn[_(x) F(x)]=(&1)m0 (&1)m0=1=s&1

holds for x # (x1 , b). Hence (2.12) with r=0 follows. This completes the
proof of (2.12). With the help of (2.11) and (2.12) we directly get (1.9) and
(1.10) under the assumption (2.2).

Next, if f satisfies (1.6) only, then we consider the function f=(x)=
f (x)+=ex, =>0, which already satisfies (2.2). Applying the above conclu-
sion to the function f= and letting = � 0 yields (1.7)�(1.10). K

3. CONSEQUENCES

Theorem 1 is very general and useful. We state some useful corollaries.

Corollary 1. Let 0�r<q�n+1 and let the (N+1)th continuously
differentiable function f satisfy (1.6). If

sr&1=sq (3.1)

or equivalently

:
q

k=r

mk # N2 , (3.2)
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then

sq_(x) _f (x)& :
q

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # (xq , xr). (3.3)

Proof. Clearly by (1.4) the equality (3.1) is equivalent to (3.2). The
inequality (1.8) with r=q reads

sq_(x) :
n+1

k=q+1

:
mk&1

j=0

f ( j)(xk) A jk(x)�0, x # (xq , b),

which, together with (1.9) and (3.1), yields (3.3). K

Corollary 2. Let 0�r�n and let an (N+1)th continuously differen-
tiable function f satisfy (1.6). If

mr+mr+1 # N2 , (3.4)

then

(&1)mr+1 _f (x)& :
r+1

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # (xr+1 , xr).

(3.5)

In particular, if

mr , mr+1 # N1 , (3.6)

then

:
r+1

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)� f (x), x # (xr+1 , xr) . (3.7)

Proof. By Corollary 1 with q=r+1 we obtain

sr+1 _(x) _f (x)& :
r+1

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)&�0, x # (xr+1 , xr).

(3.8)

But by (2.1) for x # (xr+1 , xr) we have sr+1_(x)=sr+1sr=(&1)mr+1 and
hence (3.8) becomes (3.5). The relation (3.7) is an immediate consequence
of (3.5) if (3.6) is true. K

Remark 1. For Lagrange interpolation the inequality (3.7) with f =1
becomes (1.3).
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Corollary 3. Let 0�r<q�n+1 and let an (N+1)th continuously
differentiable function f satisfy (1.6). If

mk # N2 , k=r, r+1, ..., q, (3.9)

then

:
q

k=r

:
mk&1

j=0

f ( j)(xk) Ajk(x)� f (x), x # (xq , xr) . (3.10)

Proof. Apply Corollary 1. K

Corollary 4. Let 0�r�n+1 and let an (N+1)th continuously
differentiable function f satisfy (1.6). If

mr # N1 , (3.11)

then

sr&1 _(x) sgn(x&xr) :
mr&1

j=0

f ( j)(xr) Ajr(x)�0, x # (a, b). (3.12)

Proof. The relation (3.11) means sr=&sr&1 . Hence (1.7) and (1.9) give
that the inequality

sr&1 _(x) sgn(x&xr) :
mr&1

j=0

f ( j)(xr) A jr(x)�0 (3.13)

holds for x # (a, xr); besides, (1.8) and (1.10) yield that the inequality
(3.13) holds for x # (xr , b). K

Corollary 5. Let d+ be a measure in (a, b) and let an (N+1) th
continuously differentiable function f satisfy

f ( j)(x)�0, x # (a, b) , j=0, 1, ..., N+1. (3.14)

Then

:
n+1

k=0

:
mk&1

j=0

Cjk f ( j)(xk)�|
b

a
f (x) _(x) d+(x), (3.15)

where

Cjk=|
b

a
Ajk(x) _(x) d+(x), j=0, 1, ..., mk&1, k=0, 1, ..., n+1.

(3.16)
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In particular, if the nodes xk 's are the solution of the extremal problem:

|
b

a } `
n+1

k=0

(x&xk)mk } d+(x)

= min
a=tn+1<tn< } } } <t1<t0=b |

b

a } `
n+1

k=0

(x&tk)mk } d+(x), (3.17)

then the inequality (3.15) with

Cmk&1, k=0, k=1, 2, ..., n, (3.18)

holds.

Proof. The inequality (3.15) follows from (1.9) with r=0. Further, if
the relation (3.17) is true then by [1, Theorem 3] (3.18) must hold. K

Remark 2. The special case of the second part of Corollary 5 when
m0=mn+1=0 and m1= } } } =mn=2 can be found in [3, Lemma I.1.5,
p. 92].
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